Муниципальное бюджетное общеобразовательное учреждение Чекаловская основная общеобразовательная школа

PACCMOTPEHO

СОГЛАСОВАНО

УТВЕРЖДАЮ

 Заместитель директора МБОУ «Чекаловская ООШ» мер — Солопова А.А. 30 .08.2022г Директор МБОУ «Чекаловская ООШ» Тисто во Гнутова.Н.В. Приказ № 55 от 31.08.2022

Рабочая программа учебного предмета

физика

с использованием оборудования «Точки Роста» для основного общего образования

Срок освоения программы: 1 год

9 класс

Количество часов: всего__102_ч, в неделю__3_ч

Составитель: Исупова М.И.

учитель физики

Содержание.

Раздел I Пояснительная записка

Раздел II Планируемые результаты

Раздел III Содержание учебного предмета

Раздел IV Тематическое планирование

Раздел V Оценочные и методические материалы

Раздел VI Описание материально-технического и учебно-методического обеспечения.

Раздел I Пояснительная записка

Рабочая программа по физике 9 класса составлена в соответствии с Федеральным государственным образовательным стандартом:

- 1. Федеральный Закон от 29.12. 2012 № 273-ФЗ «Об образовании в Российской Федерации» (ред. от 02.03.2016; с изм. и доп., вступ. в силу с 01.07.2016);
- 2. Физика» 7-9 классы (базовый уровень) и примерных программ по учебным предметам. Физика. 7 9 классы: проект. М.: Просвещение, 2018. 48 с. (Стандарты второго поколения). , на основе рабочих программ по физике. 7 11 классы / Под ред. М.Л. Корневич. М.: ИЛЕКСА, 2019. , на основе авторской программы А.В.Перышкина, Е.М. Гутник, с учетом требований Государственного образовательного стандарта второго поколения. Реализация образовательных программ естественнонаучной и технологической направленностей по физике с использованием оборудования центра «ТОЧКА РОСТА»7-11 классы/Министерство просвещения Российской Федерации/,2021г.
- 3. ФГОС ООП ООО МБОУ Чекаловская ООШ на 2022-2023 уч. год; основное
- 4. Основная образовательная программа МБОУ Чекаловская ООШ на 2022-2023 уч. год
- 5. Положение МБОУ Чекаловская ООШ «О рабочей программе учебных курсов, предметов, дисциплин» приказ приказ №78 от 17.08.2022 г.;
- 6. Постановления Правительства РФ . "О переносе выходных дней в 2022 году", "О переносе выходных дней в 2023 году"
- 7. Приказа Министерства Просвещения Российской Федерации № 254 от 20.05.2020 г «О федеральном перечне учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию реализации образовательных программ начального общего, основного общего, среднего общего образования».
- 8. Приказ Министерства просвещения РФ от 11 декабря 2020 г. N 712 « О внесении изменений в некоторые федеральные государственные образовательные стандарты общего образования по вопросам воспитания обучающегося»
- 9. Приказ Министерства Просвещения Российской Федерации от 05.03.2020г. №62645 « О внесении изменений в федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего образования, вступает в силу с 13.03.2021г.
- 10. Учебника А. В. Перышкина «Физика. 9 класс» / Е. М. Гутник, Е. В. Рыбакова. Под ред. Е. М. Гутник. М.: Дрофа, 2015. 96 с. ил.
- 11. Реализация образовательных программ естественнонаучной и технологической направленностей по физике с использованием оборудования центра «Точка роста» Методическое пособия Центр Естественно-научного и математического образования Руководитель Центра 3. Г. Гапонюк, Ответственный за выпуск В. В. Кудрявцев, Редактор В. В. Кудрявцев, Художественное оформление М. И. Иванова, Компьютерная вёрстка и техническое редактирование Э. В. Алексеев, Корректор П. И. Петрова

Цель изучения:

освоение знаний о механических, магнитных, квантовых явлениях, электромагнитных колебаниях и волнах; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;

овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;

развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;

воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;

применение полученных знаний иумений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды

Общая характеристика учебного курса:

Школьный курс физики — системообразующий для естественнонаучных предметов, поскольку оизические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, еографии и астрономии. Физика вооружает школьников научным методом познания, позволяющим олучать объективные знания об окружающем мире.

В 7 и 8 классах происходит знакомство с физическими явлениями, методом научного познания, ормирование основных физических понятий, приобретение умений измерять физические величины, роводить лабораторный эксперимент по заданной схеме. В 9 классе начинается изучение основных ризических законов, лабораторные работы становятся более сложными, школьники учатся планировать ксперимент самостоятельно.

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, сосит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в ономическом и культурном развитии общества, способствует формированию современного научного провоззрения. Для решения задач формирования основ научного мировоззрения, развития ителлектуальных способностей и познавательных интересов школьников в процессе изучения физики новное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного знания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания редполагается проводить при изучении всех разделов курса физики, а не только при изучении специального здела «Физика и физические методы изучения природы».

манитарное значение физики как составной части общего образования состоит в том, что она вооружает кольника научным методом познания, позволяющим получать объективные знания об окружающем мире. ание физических законов необходимо для изучения химии, биологии, физической географии, технологии, БЖ.

рс физики в программе основного общего образования структурируется на основе рассмотрения зличных форм движения материи в порядке их усложнения. Физика в основной школе изучается на уровне ссмотрения явления природы, знакомства с основными законами физики и применением этих законов в хнике и повседневной жизни.

есто учебного предмета в учебном плане

Учебный предмет «Физика» в основной общеобразовательной школе относится к числу обязательных и одит в Федеральный компонент учебного плана. Обучение физике проводится на базовом уровне. В том сле 3 часа в неделю в IX классе- 102 час. С учетом календарного графика данная программа для 9 класса ссчитана на 102 часа,

2 Раздел Планирование результатов освоения учебного предмета Личностные результаты

Обучающийся получит возможность для формирования следующих личностных результатов:

- развитие познавательных интересов, интеллектуальных и творческих способностей;
- убеждённость в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как к элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственнымиинтересами и возможностями;
- мотивация образовательной деятельности на основе личностно ориентированного подхода;
- формирование ценностного отношения друг к другу, к учителю, к авторамоткрытий и изобретений, к результатам обучения.

Метапредметные результаты

Обучающийся получит возможность для формирования следующих метапредметных результатов:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нём ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;

- развитие монологической и диалогической речи, умения выражать свои мысли, способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приёмов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Регулятивные УУД

Обучающийся получит возможность для формирования следующих регулятивных УУД.

- 1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
- анализировать существующие и планировать будущие образовательные результаты;
- идентифицировать собственные проблемы и определять главную проблему;
- выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
- ставить цель деятельности на основе определённой проблемы и существующих возможностей;
- формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов.
- 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
- определять необходимое(ые) действие(я) в соответствии с учебной и познавательной задачами и составлять алгоритм его(их) выполнения;
- обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
- определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задач;
- выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);

- выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
- составлять план решения проблемы (выполнения проекта, проведения исследования);
- определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
- описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определённого класса;
- планировать и корректировать свою индивидуальную образовательную траекторию.
- 3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижениярезультата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
- определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
- систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
- отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
- оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
- находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
- работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
- устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
- сверять свои действия с целью и при необходимости исправлять ошибки самостоятельно.
- 4. Умение оценивать правильность выполнения учебной задачи, собственные возможности её решения. Обучающийся сможет:
- определять критерии правильности (корректности) выполнения учебнойзадачи;

- анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
- оценивать продукт своей деятельности по заданным и/или самостоятельно определённым критериям в соответствии с целью деятельности;
- обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
- фиксировать и анализировать динамику собственных образовательных результатов.
- 5. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности. Обучающийся сможет:
- наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
- соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
- принимать решение в учебной ситуации и нести за него ответственность;
- самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
- ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;
- демонстрировать приёмы регуляции психофизиологических/эмоциональных состояний для достижения эффекта успокоения (устранения эмоциональной напряжённости), эффекта восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности).

Познавательные УУД

Обучающийся получит возможность для формирования следующих познавательных УУД. 1. Умение определять понятия. создавать обобшения. **устанавливать** аналогии. классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:

• подбирать слова, соподчинённые ключевому слову, определяющие его признаки и свойства;

- выстраивать логическую цепочку, состоящую из ключевого слова и соподчинённых ему слов;
- выделять общий признак двух или нескольких предметов или явлений иобъяснять их сходство;
- объединять предметы и явления в группы по определённым признакам, сравнивать, классифицировать и обобщать факты и явления;
- выделять явление из общего ряда других явлений;
- определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
- строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
- строить рассуждение на основе сравнения предметов и явлений, выделяя приэтом общие признаки;
- излагать полученную информацию, интерпретируя её в контексте решаемойзадачи;
- самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
- вербализовать эмоциональное впечатление, оказанное на него источником;
- объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
- выявлять и называть причины события, явления, в том числе возможные/наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;
- делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
- 2. Умение создавать, применять и преобразовывать знаки и символы, моделии схемы для решения учебных и познавательных задач. Обучающийся сможет:
- обозначать символом и знаком предмет и/или явление;
- определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
- создавать абстрактный или реальный образ предмета и/или явления;
- строить модель/схему на основе условий задачи и/или способа её решения;
- создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;

- преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
- переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления втекстовое и наоборот;
- строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
- строить доказательство: прямое, косвенное, от противного;
- анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.
- 3 Смысловое чтение. Обучающийся сможет:
- находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
- ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
- устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
- резюмировать главную идею текста;
- критически оценивать содержание и форму текста.
- 4. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации. Обучающийся сможет:
- определять своё отношение к природной среде;
- анализировать влияние экологических факторов на среду обитания живых организмов;
- проводить причинный и вероятностный анализ экологических ситуаций;
- прогнозировать изменения ситуации при смене действия одного фактора надействие другого фактора;
- распространять экологические знания и участвовать в практических делах позащите окружающей среды;
- выражать своё отношение к природе через рисунки, сочинения, модели,проектные работы.
- 5. Развитие мотивации к овладению культурой активного использованиясловарей и других поисковых систем. Обучающийся сможет:
- определять необходимые ключевые поисковые слова и запросы;
- осуществлять взаимодействие с электронными поисковыми системами,словарями;

- формировать множественную выборку из поисковых источников для объективизации результатов поиска;
- соотносить полученные результаты поиска со своей деятельностью.

Коммуникативные УУД

- 1. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе:находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формулировать, аргументировать и отстаивать своё мнение. Обучающийся сможет:
- определять возможные роли в совместной деятельности;
- играть определённую роль в совместной деятельности;
- принимать позицию собеседника, понимая позицию другого, различать в егоречи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- определять свои действия и действия партнёра, которые способствовали или препятствовали продуктивной коммуникации;
- строить позитивные отношения в процессе учебной и познавательной деятельности;
- корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
- критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
- предлагать альтернативное решение в конфликтной ситуации;
- выделять общую точку зрения в дискуссии;
- договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
- организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
- 2. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийсясможет:
- определять задачу коммуникации и в соответствии с ней отбирать речевые средства;

- отбирать и использовать речевые средства в процессе коммуникации сдругими людьми (диалог в паре, в малой группе и т. д.);
- представлять в устной или письменной форме развёрнутый план собственной деятельности;
- соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
- высказывать и обосновывать мнение (суждение) и запрашивать мнениепартнёра в рамках диалога;
- принимать решение в ходе диалога и согласовывать его с собеседником;
- создавать письменные клишированные и оригинальные тексты с использованием необходимых речевых средств;
- использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;
- использовать невербальные средства или наглядные материалы, подготовленные/ отобранные под руководством учителя;
- делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
- 3. Формирование и развитие компетентности в области использования информационно коммуникационных технологий (далее ИКТ). Обучающийся сможет:
- целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач, с помощью средствИКТ;
- выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
- выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
- использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;
- использовать информацию с учётом этических и правовых норм;
- создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационнойбезопасности.

Предметные результаты

Обучающийся получит возможность для формирования следующих предметных результатов:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов итеоретических моделей физические законы;
- коммуникативные умения: докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Раздел Ш. Содержание учебного предмета

(практическая часть учебного содержания предмета усилена материально-технической базой центра «Точка роста», используемогодля реализации образовательных программ в рамках преподавания физики).

Квантовые явления Опыты Резерфорда. Планетарная модель атома. Линейчатые оптическиеспектры. Поглощение и испускание света атомами.

Состав атомного ядра. Зарядовое и массовое числа.

Ядерные силы. Энергия связи атомных ядер. Радиоактивность. Альфа-, бета -и гаммаизлучения. Методы регистрации ядерных излучений.

Ядерные реакции. Деление и синтез ядер. Источники энергии Солнца и звезд. Ядерная энергетика.

Дозиметрия. Влияние радиоактивных излучений на живые организмы. Экологические проблемы работы атомных электростанций.

<u>Демонстрации</u> Модель опыта Резерфорда. Наблюдение треков частиц вкамере Вильсона. Устройство и действие счетчика ионизирующих частиц.

<u>Лабораторные работы и опыты</u> Наблюдение линейчатых спектров излучения. Измерение естественного радиоактивного фона дозиметром.

Выпускник научится:

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;
- описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров. Выпускник получит возможность научиться:
- использовать полученные знания в повседневной жизни при обращении с приборами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра;

• понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Строение и эволюция Вселенной

Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной Системы. Физическая природа Солнца и звезд. Строение Вселенной. ЭволюцияВселенной. Демонстрации

Астрономические наблюдения.

Знакомство с созвездиями и наблюдение суточного вращения звездного неба. Наблюдение движения Луны, Солнца и планет относительно звезд.

Выпускник научится:

- различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд;
 - понимать различия между гелиоцентрической и геоцентрической системами мира. Выпускник получит возможность научиться:
 - указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звёздного неба при наблюдениях звёздного неба;
 - различать основные характеристики звёзд (размер, цвет, температура), соотносить цвет звезды с её температурой;
 - различать гипотезы о происхождении Солнечной системы.

9 класс (102 часа, 3 часа в неделю)Законы движения и

взаимодействия тел Материальная точка. Система отсчета.

Перемещение. Скорость прямолинейного равномерного движения. Равноускоренное прямолинейное движение: мгновенная скорость, ускорение, перемещение.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении.

Относительность механического движения.

Первый закон Ньютона. Инерциальные системы отсчета. Второй закон Ньютона. Третий закон Ньютона.

Свободное падение. Закон всемирного тяготения. Искусственные спутники Земли.

Импульс. Закон сохранения импульса. Ракеты. Лабораторные работы:

- 1. Исследование равноускоренного движения без начальной скорости (с использованием оборудования «Точка роста»)
- 2. Измерение ускорения свободного падения (с использованием оборудования «Точка роста»).

Механические колебания и волны. Звук

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Период, частота и амплитуда колебаний. Превращение энергии при колебаниях. Затухающие колебания. Вынужденные колебания.

Распространение колебаний в упругих средах. Поперечные и продольныеволны. Связь длины волны со скоростью ее распространения и периодом.

Звуковые волны. Скорость звука. Громкость звука и высота тона. Эхо.

Лабораторные работы:

3. Исследование зависимости периода и частоты свободных колебаниймаятника от его длины (с использованием оборудования «Точка роста»).

Электромагнитные явления

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Электромагнитная индукция. Генератор переменного тока. Преобразование энергии в электрогенераторах. Экологические проблемы, связанные c тепловыми гидроэлектростанциями. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Электромагнитная природа света. Лабораторные работы:

4. Изучение явления электромагнитной индукции.

Строение атома и атомного ядра Радиоактивность как свидетельствосложного строения атомов. Альфа-, бета - и гамма-излучения.

Опыты Резерфорда. Ядерная модель атома.

Радиоактивные превращения атомных ядер.

Протонно - нейтронная модель ядра. Зарядовое и массовое число. Ядерные реакции. Деление и синтез ядер. Сохранение зарядового и массового чисел при ядерных реакциях.

Энергия связи частиц в ядре. Выделение энергии при ядерных реакциях. Излучение звезд. Ядерная энергетика. Экологические проблемы работы атомных электростанций.

Методы наблюдения и регистрации частиц в ядерной физике. Дозиметрия.

Лабораторные работы:

5. Изучение деления ядра атома урана по фотографии треков.

Строение и эволюция Вселенной

Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной Системы. Физическая природа Солнца и звезд. Строение Вселенной. ЭволюцияВселенной.

Повторение

Учащиеся должны уметь:

- давать определение основных понятий относительность механического движения, траектория, инерциальная система отсчета, искусственный спутник, замкнутая система, внутренние силы, математический маятник, звук, магнитное поле, вихревое поле, электромагнитное поле, электромагнитные волны. альфа-, бета-, гамма- излучение, изотоп, нуклон, атомное ядро, протон, нейтрон;
- давать определение физических величин: перемещение, проекция вектора, путь, скорость, ускорение, ускорение свободного падения, центростремительное ускорение, сила, сила тяжести, масса, вес тела, импульс, период, частота, амплитуда, период, частота, фаза, длина волны, скорость

волны, магнитная индукция, магнитный поток, энергия электромагнитного поля; энергия связи, дефект масс.

- объяснять сущность геоцентрической и гелиоцентрической системы мира,
- уметь объяснять происхождение Солнечной системы, строение Вселенной, эволюцию Вселенной, Физическую природу небесных тел, Солнца и звезд;
- уметь формулировать законы Ньютона, законы сохранения импульса; уравнения кинематики, закон всемирного тяготения, закон сохранения импульса, принцип относительности Галилея, законы гармонических колебаний, правило левой руки, закон электромагнитной индукции, правило Ленца, закон радиоактивного распада;
- объяснять механические явления;
- решать ОЗМ для равномерного и равнопеременного прямолинейного движения;
- формулировать закон электромагнитной индукции, правило Ленца;
- объяснять превращение энергии при колебаниях;
- пользоваться моделями темы для объяснения явлений;
- решать задачи первого уровня.

Раздел IV. «ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ»

№/п	Содержание	Количество часов	ЭОР/ЦОР
1.	Законы взаимодействия и движения тел.	34	ЦОК
2.	Механические колебания и волны. Звук.	15	ЦОК
3.	Электромагнитное поле.	26	ЦОК
4.	Строение атома и атомного ядра. Использование энергии атомных ядер.	15	ЦОК
5.	Строение и эволюция Вселенной (6ч)	8	ЦОК
6	Повторение	4	ЦОК

Раздел V. Оценочные и методические материалы.

Критерии и нормы оценки знаний, умений и навыков учащихся.

Оценка устных ответов учащихся.

Оценка 5 ставится в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий и законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может устанавливать связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом усвоенным при изучении других предметов.

Оценка 4 ставится в том случае, если ответ ученика удовлетворяет основным требованиям к ответу на оценку 5, но без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может исправить их самостоятельно или с небольшой помощью учителя.

Оценка 3 ставится в том случае, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики; не препятствует дальнейшему усвоению программного материала, умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; допустил не более одной грубой и одной негрубой ошибки, не более двухтрех негрубых недочетов.

Оценка 2 ставится в том случае, если учащийся не овладел основными знаниями в соответствии с требованиями и допустил больше ошибок и недочетов, чем необходимо для оценки 3.

Оценка 1 ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

Оценка письменных контрольных работ.

Оценка 5 ставится за работу, выполненную полностью без ошибок и недочетов.

Оценка 4 ставится за работу, выполненную полностью, но при наличии не более одной ошибки и одного недочета, не более трех недочетов.

Оценка 3 ставится за работу, выполненную на 2/3 всей работы правильно или при допущении не более одной грубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов.

Оценка 2 ставится за работу, в которой число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 работы.

Оценка 1 ставится за работу, невыполненную совсем или выполненную с грубыми ошибками в заданиях.

Оценка лабораторных работ.

Оценка 5 ставится в том случае, если учащийся выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасного труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления, правильно выполняет анализ погрешностей.

Оценка 4 ставится в том случае, если учащийся выполнил работу в соответствии с требованиями к оценке 5, но допустил два-три недочета, не более одной негрубой ошибки и одного недочета.

Оценка 3 ставится в том случае, если учащийся выполнил работу не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, если в ходе проведения опыта и измерений были допущены ошибки.

Оценка 2 ставится в том случае, если учащийся выполнил работу не полностью и объем выполненной работы не позволяет сделать правильные выводы, вычисления; наблюдения проводились неправильно.

Оценка 1 ставится в том случае, если учащийся совсем не выполнил работу.

Во всех случаях оценка снижается, если учащийся не соблюдал требований правил безопасного труда.

Перечень ошибок.

І. Грубые ошибки.

- 1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения физических величин, единицу измерения.
- 2. Неумение выделять в ответе главное.
- 3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.
- 4. Неумение читать и строить графики и принципиальные схемы
- 5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.
- 6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.
- 7. Неумение определить показания измерительного прибора.
- 8. Нарушение требований правил безопасного труда при выполнении эксперимента.

II. Негрубые ошибки.

- 1. Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.
- 2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.
- 3. Пропуск или неточное написание наименований единиц физических величин.
- 4. Нерациональный выбор хода решения.

III. Недочеты.

• Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач.

- Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
- Отдельные погрешности в формулировке вопроса или ответа.
- Небрежное выполнение записей, чертежей, схем, графиков.
- Орфографические и пунктуационные ошибки.

Раздел VI Учебно-методическое и материально-техническое обеспечение образовательного процесса.

Тематика докладов, рефератов и иных видов самостоятельной работы учащихся.

Исследовательская работа по теме «Пропускающая способность звука различными объектами».

Реферат на тему «Защита от электромагнитных полей».

Реферат по теме 'Микромир и его объекты'.

Доклад учащегося по теме: 1). «Геоцентрическая система мира». 2). «Гелиоцентрическая система мира».

Презентация учащегося по теме: 1). «Жизнь и деятельность Ньютона».

Исследовательская работа учащегося по теме: 1). «Есть ли жизнь в космосе»; 2). «Искусственные спутники Земли».

Перечень демонстрационного оборудования:

Модель генератора переменного тока, модель опыта Резерфорда.

Измерительные приборы: метроном, секундомер, дозиметр, гальванометр, компас.

Трубка Ньютона, прибор для демонстрации свободного падения, комплект приборов по кинематике и динамике, прибор для демонстрации закона сохранения импульса, прибор для демонстрации реактивного движения.

Нитяной и пружинный маятники, волновая машина, камертон.

Трансформатор, полосовые и дугообразные магниты, катушка, ключ, катушка-моток, соединительные провода, низковольтная лампа на подставке, спектроскоп, высоковольтный индуктор, спектральные трубки с газами, стеклянная призма.

Перечень оборудования для лабораторных работ.

Работа №1. Штатив с муфтой и лапкой, металлический цилиндр, шарик, измерительная лента, желоб лабораторный металлический.

Работа №2. Прибор для изучения движения тел, штатив с муфтой и лапкой, миллиметровая и копировальная бумага.

Работа №3. Штатив с муфтой и лапкой, пружина, набор грузов, секундомер.

Работа №4. Штатив с муфтой и лапкой, металлический шарик, нить, секундомер (или метроном)

Работа №5. Миллиамперметр, катушка-моток, магнит дугообразный, источник питания, катушка с железным сердечником, реостат, ключ, соединительные провода, модель генератора переменного тока.

Работа №6. Высоковольтный индуктор, газонаполненные трубки, спектроскоп.

Работы №7-8 Фотографии треков заряженных частиц, полученных в камере Вильсона, пузырьковой камере и фотоэмульсии.

Перечень учебно-методических средств обучения.

Государственный образовательный стандарт общего образования. // Официальные документы в образовании. – 2004. № 24-25.

Гутник Е. М. Физика. 9 кл.: тематическое и поурочное планирование к учебнику А. В. Перышкина «Физика. 9 класс» / Е. М. Гутник, Е. В. Рыбакова. Под ред. Е. М. Гутник. – М.: Дрофа, 2003. – 96 с. ил.

Закон Российской Федерации «Об образовании» // Образование в документах и комментариях. – М.: АСТ «Астрель» Профиздат. -2005. 64 с.

Кабардин О. Ф., Орлов В. А. Физика. Тесты. 7-9 классы.: Учебн.-метод. пособие. – М.: Дрофа, 2000. – 96 с. ил.

Лукашик В. И. Сборник задач по физике: Учеб пособие для учащихся 7-8 кл. сред.шк.

Лукашик В. И. Физическая олимпиада в 6-7 классах средней школы: Пособие для учащихся.

Минькова Р. Д. Тематическое и поурочное планирование по физике: 9-й Кл.: К учебнику А. В. Перышкина, Е. М. Гутник «Физика. 9 класс»/ Р. Д. Минькова, Е. Н. Панаиоти. – М.: Экзамен, 2003. – 127 с. ил.

Перышкин А. В. Физика. 9 кл.: Учеб. для общеобразоват учеб. заведе-ний. М.: Дрофа, 2008

Программы для общеобразовательных учреждений. Физика. Астрономия. 7-11 кл. / сост. В. А. Коровин, В. А. Орлов. – 2-е изд., стереотип. – М.: Дрофа, 2009. – 334 с.

Сборник нормативных документов. Физика./сост. Э. Д. Днепров, А. Г. Аркадьев. – М.: Дрофа, 2007. -207 с.

Дидактические карточки-задания М. А. Ушаковой, К. М. Ушакова, дидактические материалы по физике (А. Е. Марон, Е. А. Марон), тесты (Н К. Ханнанов, Т. А. Ханнанова) помогут организовать самостоятельную работу школьников в классе и дома.

- Перышкин А.В., Гутник Е.М. Физика-9 М.: Дрофа, 2017.
- ✓ сборниками тестовых и текстовых заданий для контроля знаний и умений:
 - Лукашик В.И. сборник вопросов и задач по физике. 7-9 кл. М.: Просвещение, 2017. 192с.
 - Марон А.Е., Марон Е.А.Контрольные тексты по физике. 7-9 кл. М.: Просвещение, 2017. 79с
 - Л.В. Лукашик, Е.В. Иванова: «Сборник задач по физике 7 9 классы» М., Просвещение, 2004г.

- Губанов В. В. «Лабораторные работы и контрольные задания по физике: Тетрадь для учащихся 9-го класса» Саратов, Лицей, 2005г.
- С.П. Мясников, Т.Н. Осанова: «Пособие по физике» М., Высшая школа, 1988;
- Т.И. Трофимова, З.Г. Павлова: «Сборник задач по курсу физики с решениями» М., Высшая школа, 1999;
- Б.М.Яворский, Ю.А. Селезнев: «Справочное руководство по физике для поступающих в ВУЗы и для самообразования» М., Наука, 1989.
- Рымкевич А. П., Рымкевич П. А: «Сборник задач по физике» М., Просвещение, 2002.
- Учебное электронное издание. Интерактивный курс физики для 7 11 классов. Практикум. ФИЗИКОН. 2004
- Учебное электронное издание. Лабораторные работы для 7 9 классов.
- Таблины
- Пакет олимпиадных заданий

Контрольно – измерительные материалы, направленные на изучение уровня:

- знаний основ физики (монологический ответ, экспресс опрос, фронтальный опрос, тестовый опрос, написание и защита сообщения по заданной теме, объяснение эксперимента)
- приобретенных навыков самостоятельной и практической деятельности учащихся (в ходе выполнения лабораторных работ и решения задач)
- развитых свойств личности: творческих способностей, интереса к изучению физики, самостоятельности, коммуникативности, критичности, рефлексии.

Используемые технические средства

- Персональный компьютер
- Мультимедийный проектор